如图.某小区有一块空地△ABC,其中AB=5米,AC=5米,AB⊥AC,小区物业拟在中间挖个小池塘△AEF,E、F在边BC上(E、F不与B、C重合,且E在B、F之间),且∠EAF=π4,设∠EAB=θ.
(1)若θ=π6,求EF的值;
(2)为节省投入资金,小池塘△AEF的面积需要尽可能的小,试确定θ的值,使得△AEF的面积取最小值,并求出△AEF面积的最小值.
∠
EAF
=
π
4
θ
=
π
6
【答案】(1)米;(2)当时,△AEF的面积取最小值为平方米.
EF
=
15
2
-
5
6
6
θ
=
π
8
25
(
2
-
1
)
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/12 8:0:9组卷:39引用:2难度:0.4
相似题
-
1.已知灯塔A在海洋观察站C的北偏东65°,距离海洋观察站C的距离为akm,灯塔B在海洋观察站C的南偏东55°,距离海洋观察站C的距离为3akm,则灯塔A与灯塔B的距离为( )
发布:2024/12/30 4:0:3组卷:50引用:3难度:0.7 -
2.在①
,②2a-c=2bcosC,③(a-b)(a+b)=(a-c)c这三个条件中任选一个,补充在下面的问题中,并解答该问题.3(a-bcosC)=csinB
在△ABC中,内角A,B,C的对边分别是a,b,c,且满足 _____,.b=23
(1)若a+c=4,求△ABC的面积;
(2)求△ABC周长l的取值范围.发布:2024/12/29 13:0:1组卷:280引用:4难度:0.5 -
3.如图,在铁路建设中,需要确定隧道两端的距离(单位:百米),已测得隧道两端点A,B到某一点C的距离分别为5和8,∠ACB=60°,则A,B之间的距离为( )
发布:2024/12/29 13:0:1组卷:294引用:5难度:0.7