已知函数f(x)=x2(ax-3)+2的定义域为R,其中a∈R.
(1)若x=1是函数y=f(x)的一个驻点,求a的值;
(2)函数y=f(x)在区间(-1,0)上严格增,求a的取值范围;
(3)当a>0时,若函数g(x)=f(x)+f′(x),x∈[0,2]在x=0处取得最大值,求a的取值范围.
【考点】利用导数研究函数的单调性;利用导数研究函数的最值.
【答案】(1)a=2;
(2)[-2,+∞);
(3).
(2)[-2,+∞);
(3)
a
∈
(
0
,
6
5
]
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/26 8:0:9组卷:108引用:1难度:0.4
相似题
-
1.已知函数f(x)=x3-2kx2+x-3在R上不单调,则k的取值范围是 ;
发布:2024/12/29 13:0:1组卷:236引用:3难度:0.8 -
2.在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x•f′(x)<0的解集为( )
发布:2024/12/29 13:0:1组卷:265引用:7难度:0.9 -
3.已知函数f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)若函数f(x)有两个极值点x1,x2(x1≠x2),证明:.x1•x2>e2发布:2024/12/29 13:30:1组卷:142引用:2难度:0.2