《义务教育数学课程标准(2022年版)》关于运算能力的解释为:运算能力主要是指根据法则和运算律进行正确运算的能力.因此,我们面对没有学过的数学题时,方法可以创新,但在创新中要遵循法则和运算律,才能正确解答,下面介绍一种分解因式的新方法——拆项补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于已学过的方法进行分解.
例题:用拆项补项法分解因式x3-9x+8.
解:添加两项-x2+x2.
原式=x3-x2+x2-9x+8
=x3-x2+x2-x-8x+8
=x2(x-1)+x(x-1)-8(x-1)
=(x-1)(x2+x-8)
请你结合自己的思考和理解完成下列各题:
(1)分解因式:x3+9x-10;
(2)分解因式:x3-2x2-5x+6;
(3)分解因式:x4+5x3+x2-20x-20.
【答案】(1)(x-1)(x2+x+10);
(2)(x-1)(x-3)(x+2);
(3)=x+2)(x3+3x2-5x-10).
(2)(x-1)(x-3)(x+2);
(3)=x+2)(x3+3x2-5x-10).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:557引用:1难度:0.5