古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,…,我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中的“落一形”锥垛就是每层为“三角形数”的三角锥的锥垛(如图所示,顶上一层1个球,下一层3个球,再下一层6个球…),若一“落一形”三角锥垛有20层,则该锥垛球的总个数为( )
(参考公式:12+22+32+⋯+n2=n(n+1)(2n+1)6(n∈N*))
1
2
+
2
2
+
3
2
+
⋯
+
n
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
(
n
∈
N
*
)
【答案】C
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/4 8:0:8组卷:113引用:7难度:0.6
相似题
-
1.按数列的排列规律猜想数列
,23,-45,87,…的第10项是( )-169发布:2024/12/29 13:30:1组卷:105引用:6难度:0.8 -
2.根据给出的数塔猜测123456×9+7=( )
1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111
12345×9+6=111111
…发布:2024/12/29 11:0:2组卷:545引用:8难度:0.9 -
3.如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n层有an个球,上往下n层球的总数为Sn,则( )
发布:2024/12/29 6:30:1组卷:112引用:7难度:0.7