如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=-2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A的纵坐标为t,△ABC的面积为s.
(1)当点B的坐标为(-12,12)时,直接写出t的值;
(2)s关于t的函数解析式为s=14t2+bt-54,t<-1或t>5 a(t+1)(t-5),-1<t<5
,其图象如图2所示,结合图1、2的信息,求出a与b的值;
(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.
(
-
1
2
,
1
2
)
s
=
1 4 t 2 + bt - 5 4 , t < - 1 或 t > 5 |
a ( t + 1 ) ( t - 5 ) ,- 1 < t < 5 |
【考点】二次函数综合题.
【答案】(1)t=2;
(2)b=-1,a=-;
(3)点A(-2,1),S△ABC=2或点A(-2,9),S△ABC=10或点A(-2,3),S△ABC=2.
(2)b=-1,a=-
1
4
(3)点A(-2,1),S△ABC=2或点A(-2,9),S△ABC=10或点A(-2,3),S△ABC=2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/11 8:0:9组卷:54引用:1难度:0.3
相似题
-
1.如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.发布:2025/5/23 8:0:2组卷:2234引用:15难度:0.1 -
2.综合与探究
如图1,平面直角坐标系xOy中,抛物线y=-x2+bx+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-2,0),抛物线上有一动点P,点P在第一象限,过点P作y轴的平行线分别交x轴和直线BC于点D和点E.38
(1)求抛物线及线段BC的函数关系式;
(2)当点E为线段DP的中点时,求点E的坐标;
(3)如图2,作射线OP,交直线BC于点F,当△OBF是等腰三角形时,求点F的坐标.发布:2025/5/23 8:0:2组卷:210引用:1难度:0.3 -
3.如图,已知抛物线y=ax2+2x+c交x轴于点A(-1,0)和点B(3,0),交y轴于点C,点D与点C关于抛物线的对称轴对称.
(1)求该抛物线的表达式,并求出点D的坐标;
(2)若点E为该抛物线上的点,点F为直线AD上的点,若EF∥x轴,且EF=1(点E在点F左侧),求点E的坐标;
(3)若点P是该抛物线对称轴上的一个动点,是否存在点P,使得△APD为直角三角形?若不存在,请说明理由;若存在,直接写出点P坐标.发布:2025/5/23 8:0:2组卷:263引用:2难度:0.1