如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB,FE,DC为铅直方向的边,AF,ED,BC为水平方向的边,点E在AB,CD之间,且在AF,BC之间,我们称这样的图形为“L图形”,记作“L图形ABCDEF”.若直线将L图形分成面积相等的两个图形,则称这样的直线为该L图形的面积平分线.
【活动】
小华同学给出了图1的面积平分线的一个作图方案:如图2,将这个L图形分成矩形AGEF、矩形GBCD,这两个矩形的对称中心O1,O2所在直线是该L图形的面积平分线.
请用无刻度的直尺在图1中作出其他的面积平分线.(作出一种即可,不写作法,保留作图痕迹)

【思考】
如图3,直线O1O2是小华作的面积平分线,它与边BC,AF分别交于点M,N,过MN的中点O的直线分别交边BC,AF于点P,Q,直线PQ 是是(填“是”或“不是”)L图形ABCDEF的面积平分线.

【应用】
在L图形ABCDEF形中,已知AB=4,BC=6.
(1)如图4,CD=AF=1.
①该L图形的面积平分线与两条水平的边分别相交于点P,Q,求PQ长的最大值;
②该L图形的面积平分线与边AB,CD分别相交于点G,H,当GH的长取最小值时,BG的长为 3434.
(2)设CDAF=t(t>0),在所有的与铅直方向的两条边相交的面积平分线中,如果只有与边AB,CD相交的面积平分线,直接写出t的取值范围 t>23t>23.
3
4
3
4
CD
AF
2
3
2
3
【考点】四边形综合题.
【答案】是;;t>
3
4
2
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/7 9:0:8组卷:1736引用:2难度:0.1
相似题
-
1.在一次数学研究学习中,小明将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=6cm,AC=DF=8cm,并进行如下研究活动.
活动一:将图1中的纸片DEF沿AC方向平移,连接AE,BD(如图2),当点F与点C重合时停止平移.
[思考]图2中的四边形ABDE是平行四边形吗?请说明理由.
[发现]当纸片DEF平移到某一位置时,小明发现四边形ABDE为矩形(如图3).求AF的长.
活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转a度(0≤a≤90),连接OB,OE(如图4).
[探究]当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.发布:2025/6/9 21:0:1组卷:144引用:2难度:0.2 -
2.【探究】在一次数学课上,老师出示了这样一道题目:“如图,在矩形ABCD中,AC:为对角线,AB<AD,E、F分别为边BC、AD上的点,连接AE、CF,分别将△ABE和△CDF沿AE、CF翻折,使点B、D的对称点G、H都落在AC上,求证:四边形AECF是平行四边形.”以下是两名学生的解题方法:
甲学生的方法是:首先由矩形的性质和轴对称的性质证得AB=CD,AD∥BC,∠AHF=90°,∠CGE=90°,易得AH=CG,可得△AFH≌△CEG(ASA),由平行四边形的判定定理可得结论.
乙学生的方法是:不利用三角形全等知识,依据平行四边形的定义证明.
(1)甲学生证明四边形AECF是平行四边形所用的判定定理的内容是.
(2)用乙学生的方法完成证明过程.
【应用】当学生们完成证明后,老师又提出了一个问题:
若四边形AECF是菱形,则tan∠DAC的值为.发布:2025/6/9 19:0:2组卷:248引用:5难度:0.3 -
3.【证明体验】(1)如图(1),在△ABC中,∠ACB=2∠ABC,AD平分∠BAC交BC于D,点E在AB上,AE=AC,连结DE,求证:EB=CD.
【思考探究】(2)如图(2),在(1)的条件下,过点C作CF∥DE交AB于点F,交AD于点G,若AB=6,AC=4,求FG的长.
【拓展延伸】(3)如图(3),在四边形ABCD中,∠BAC=90°,且∠ABC=∠BDC=∠ACD,若AB=4,CD=12,求BD的长.103发布:2025/6/9 19:30:1组卷:461引用:3难度:0.3