如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB,FE,DC为铅直方向的边,AF,ED,BC为水平方向的边,点E在AB,CD之间,且在AF,BC之间,我们称这样的图形为“L图形”,记作“L图形ABCDEF”.若直线将L图形分成面积相等的两个图形,则称这样的直线为该L图形的面积平分线.
【活动】
小华同学给出了图1的面积平分线的一个作图方案:如图2,将这个L图形分成矩形AGEF、矩形GBCD,这两个矩形的对称中心O1,O2所在直线是该L图形的面积平分线.
请用无刻度的直尺在图1中作出其他的面积平分线.(作出一种即可,不写作法,保留作图痕迹)

【思考】
如图3,直线O1O2是小华作的面积平分线,它与边BC,AF分别交于点M,N,过MN的中点O的直线分别交边BC,AF于点P,Q,直线PQ 是是(填“是”或“不是”)L图形ABCDEF的面积平分线.

【应用】
在L图形ABCDEF形中,已知AB=4,BC=6.
(1)如图4,CD=AF=1.
①该L图形的面积平分线与两条水平的边分别相交于点P,Q,求PQ长的最大值;
②该L图形的面积平分线与边AB,CD分别相交于点G,H,当GH的长取最小值时,BG的长为 3434.
(2)设CDAF=t(t>0),在所有的与铅直方向的两条边相交的面积平分线中,如果只有与边AB,CD相交的面积平分线,直接写出t的取值范围 t>23t>23.
3
4
3
4
CD
AF
2
3
2
3
【考点】四边形综合题.
【答案】是;;t>
3
4
2
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/7 9:0:8组卷:1736引用:2难度:0.1
相似题
-
1.如图所示,将矩形OABC置于平面直角坐标系中,点A,C分别在x,y轴的正半轴上,已知点B(4,2),将矩形OABC翻折,使得点C的对应点P恰好落在线段OA(包括端点O,A)上,折痕所在直线分别交BC、OA于点D、E;若点P在线段OA上运动时,过点P作OA的垂线交折痕所在直线于点Q.
(1)求证:CQ=QP
(2)设点Q的坐标为(x,y),求y关于x的函数关系式及自变量x的取值范围;
(3)如图2,连接OQ,OB,当点P在线段OA上运动时,设三角形OBQ的面积为S,当x取何值时,S取得最小值,并求出最小值;发布:2025/6/9 23:0:1组卷:175引用:3难度:0.1 -
2.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG=BE且DG⊥BE,请你给出证明.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.发布:2025/6/9 22:0:2组卷:408引用:8难度:0.3 -
3.(1)问题背景
如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD的面积.
小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:
第一步:将△ADE绕点D逆时针旋转90°;
第二步:利用∠A与∠DCB互补,
证明F、C、B三点共线,
从而得到正方形DEBF;
进而求得四边形ABCD的面积.
(2)类比迁移
如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC的面积.
(3)拓展延伸
如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.发布:2025/6/9 22:30:2组卷:850引用:6难度:0.3