《几何原本》是古希腊数学家欧几里得所著的一部数学著作,在《几何原本》第六卷给出了内角平分线定理,其内容为:在一个三角形中,三角形一个内角的角平分线内分对边所成的两条线段,与这个角的两邻边对应成比例.例如,在△ABC中(图1),AD为∠BAC 的平分线,则有AB:AC=BD:DC.
(1)试证明角平分线定理;
(2)如图2,已知△ABC的重心为G,内心为I.若G,I的连线GI∥BC.求证:AB+AC=2BC.
【考点】三角形中的几何计算.
【答案】(1)证明见解答;
(2)证明见解答.
(2)证明见解答.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/14 3:0:1组卷:24引用:1难度:0.4
相似题
-
1.如图,在△ABC中,已知B=45°,D是BC边上的一点,AD=4,AC=2
,DC=2.7
(1)求cos∠ADC;
(2)求AB.发布:2024/12/29 12:0:2组卷:111引用:5难度:0.5 -
2.在△ABC中,角所对的边分别为a,b,c,给出下列四个命题中,其中正确的命题为( )
发布:2024/12/29 12:0:2组卷:189引用:14难度:0.6 -
3.如图,在Rt△ABC中,∠C=90°,O是边AC上一点,直线AB与圆O相切,切点为斜边的中点D,直线BC与圆O相切,若圆O的面积为π,则△ABC的面积为( )
发布:2025/1/28 8:0:2组卷:41引用:1难度:0.7