某天数学课上,你突然惊醒,发现黑板上有如下内容:
例:求x3-3x,x∈[0,+∞)的最小值.
解:利用基本不等式a+b+c≥33abc,得到x3+1+1≥3x,于是x3-3x=x3+1+1-3x-2≥3x-3x-2=-2,当且仅当x=1时,取到最小值-2.
(1)老师请你模仿例题,研究x4-4x,x∈[0,+∞)上的最小值;
(提示:a+b+c+b≥44abcd)
(2)研究:若19x3-3x在x∈[0,+∞)上的最小值恰是m+8m的最大值,试求实数m的取值范围.
3
abc
4
abcd
1
9
8
m
【考点】函数的最值.
【答案】(1)-3;
(2)(-∞,-4]∪[-2,0).
(2)(-∞,-4]∪[-2,0).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/10 5:0:1组卷:31引用:1难度:0.5
相似题
-
1.如图,在△ABC中,AH为BC边上的高线.P为三角形内一点,由P向三角形三边作垂线,垂足分别为D,E,F,已知|AH|,|AC|,|BC|,|AB|依次构成公差为1的等差数列.
(Ⅰ)求△ABC的面积;
(Ⅱ)求T=|PD|2+|PE|2+|PF|2的最小值.发布:2025/1/24 8:0:2组卷:58引用:1难度:0.9 -
2.已知函数f(x)=loga(1-x)+loga(3+x)(a>0且a≠1)在定义域内存在最大值,且最大值为2,g(x)=
,若对任意x1∈[-1,m•2x-12x],存在x2∈[-1,1],使得f(x1)≥g(x2),则实数m的取值可以是( )12发布:2024/12/29 13:30:1组卷:134引用:3难度:0.5 -
3.已知f(x)=|lnx|,x1,x2是方程f(x)=a(a∈R)的两根,且x1<x2,则
的最大值是 .ax1x22发布:2024/12/29 13:30:1组卷:124引用:4难度:0.5