试卷征集
加入会员
操作视频

为了纪念中国古代数学家祖冲之在圆周率上的贡献,联合国教科文组织第四十届大会上把每年的3月14日定为“国际数学日”.2023年3月14日,某学校举行数学文化节活动,其中一项活动是数独比赛(注:数独是源自18世纪瑞士的一种数学游戏,又称九宫格).甲、乙两位同学进入了最后决赛,进行数独王的争夺.决赛规则如下:进行两轮数独比赛,每人每轮比赛在规定时间内做对得1分,没做对得0分,两轮结束总得分高的为数独王,得分相同则进行加赛.根据以往成绩分析,已知甲每轮做对的概率为0.8,乙每轮做对的概率为0.75,且每轮比赛中甲、乙是否做对互不影响,各轮比赛甲、乙是否做对也互不影响.
(1)求两轮比赛结束乙得分为1分的概率;
(2)求不进行加赛甲就获得数独王的概率.

【答案】(1)
3
8
;(2)
3
10
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 8:0:9组卷:211引用:5难度:0.7
相似题
  • 1.甲、乙两人进行围棋比赛,共比赛2n(n∈N*)局,且每局甲获胜的概率和乙获胜的概率均为
    1
    2
    .如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则(  )

    发布:2024/12/29 12:0:2组卷:254引用:6难度:0.6
  • 2.小王同学进行投篮练习,若他第1球投进,则第2球投进的概率为
    2
    3
    ;若他第1球投不进,则第2球投进的概率为
    1
    3
    .若他第1球投进概率为
    2
    3
    ,他第2球投进的概率为(  )

    发布:2024/12/29 12:0:2组卷:304引用:5难度:0.7
  • 3.某市在市民中发起了无偿献血活动,假设每个献血者到达采血站是随机的,并且每个献血者到达采血站和其他的献血者到达采血站是相互独立的.在所有人中,通常45%的人的血型是O型,如果一天内有10位献血者到达采血站献血,用随机模拟的方法来估计一下,这10位献血者中至少有4位的血型是O型的概率.

    发布:2024/12/29 11:0:2组卷:1引用:1难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正