为研究某市居民的身体素质与户外体育锻炼时间的关系,对该市某社区100名居民平均每天的户外体育锻炼时间进行了调查,统计数据如表:
平均每天户外体育锻炼的时间(分钟) | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60] |
总人数 | 10 | 18 | 22 | 25 | 20 | 5 |
(1)请根据上述表格中的统计数据填写下面2×2列联表,并依据小概率值α=0.05的独立性检验,能否认为性别与户外体育锻炼是否达标有关联?
户外体育锻炼不达标 | 户外体育锻炼达标 | 合计 | |
男 | _____ | _____ | _____ |
女 | _____ | 10 | 55 |
合计 | _____ | _____ | _____ |
(3)将上述调查所得到的频率视为概率来估计全市的情况,现在从该市所有居民中随机抽取3人,求其中恰好有2人“户外体育锻炼达标”的概率.
参考公式:
χ
2
=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
参考数据:(χ2独立性检验中常用的小概率值和相应的临界值)
α | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
χα | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【考点】离散型随机变量的均值(数学期望).
【答案】(1)列联表见解析,认为性别与户外体育锻炼是否达标无关联;
(2)分布列见解析,;
(3).
(2)分布列见解析,
E
(
X
)
=
6
5
(3)
9
64
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/28 8:0:9组卷:9引用:3难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7