某条街边有A,B两个生意火爆的早餐店,A店主卖胡辣汤、油条等,B店主卖煎饼果子、豆浆等,小明为了解附近群众的早餐饮食习惯与年龄的关系,随机调查了200名到这两个早餐店就餐的顾客,统计数据如下:
A店 | B店 | |
年龄50岁及以上 | 40 | 60 |
年龄50岁以下 | 10 | 90 |
(2)根据所给数据以事件发生的频率作为相应事件发生的概率,某天有3名顾客到这两个早餐店就餐(每人只选一家),且他们的选择相互独立.设3人中到A店就餐的人数为X,求X的分布列和期望.
附:
χ
2
=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
P(χ2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【考点】离散型随机变量的均值(数学期望);独立性检验.
【答案】(1)有99%的把握认为附近群众的早餐饮食习惯与年龄有关;
(2)分布列见解析;期望为.
(2)分布列见解析;期望为
3
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/6 8:0:9组卷:4引用:1难度:0.7
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7