2020年受疫情影响,我国企业曾一度停工停产,中央和地方政府纷纷出台各项政策支持企业复工复产,以减轻企业负担.为了深入研究疫情对我国企业生产经营的影响,帮扶困难职工,在甲、乙两行业里随机抽取了200名工人进行月薪情况的问卷调查,经统计发现他们的月薪在2000元到8000元之间,具体统计数据见表.
月薪/元 | [2000,3000) | [3000,4000) | [4000,5000) | [5000,6000) | [6000,7000) | [7000,8000) |
人数 | 10 | 26 | 34 | 50 | 60 | 20 |
(1)根据所给数据完成下面的2×2列联表,并依据小概率值α=0.005的独立性检验,分析两类收入群体与行业是否有关.
Ⅰ类收入群体 | Ⅱ类收入群体 | 总计 | |
甲行业 | 50 | ||
乙行业 | 30 | ||
总计 |
χ
2
=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
α | 0.1 | 0.05 | 0.01 | 0.005 | 0.001 |
xα | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
x
①试判断小李是否属于“生活困难”的工人;
②某超市对调查的工人举行了购物券赠送活动,赠送方式为:月薪低于μ的获得两次赠送,月薪不低于μ的获得一次赠送.每次赠送金额及对应的概率如下:
赠送金额/元 | 50 | 100 | 150 |
概率 | 1 5 |
3 5 |
1 5 |
【考点】离散型随机变量的均值(数学期望).
【答案】(1)能在犯错误的概率不超过0.05的前提下认为两类收入群体与行业有关;
(2)①属于“生活困难”的工人;
②小李获得的赠送总金额的数学期望为200元.
(2)①属于“生活困难”的工人;
②小李获得的赠送总金额的数学期望为200元.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/4 8:0:5组卷:1引用:1难度:0.6
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:196引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7