湖北省教育厅出台《全省学校安全专项治理工作方案》,加强校园“十防”、“七全”安全教育和防范工作.为了普及安全教育,增强学生安全意识,武汉市准备组织一次安全知识竞赛.某学校为了选拔学生参赛,按性别采用分层抽样的方法抽取200名学生进行安全知识测试,记A=“性别为男”,B=“得分超过85分”,且P(A|B)=25,P(B|A)=58,P(B)=34.
(1)完成下列2×2列联表,并根据小概率值α=0.001的独立性检验,能否推断该校学生了解安全知识的程度与性别有关?
P
(
A
|
B
)
=
2
5
,
P
(
B
|
A
)
=
5
8
,
P
(
B
)
=
3
4
性别 | 了解安全知识的程度 | 合计 | |
得分不超过85分的人数 | 得分超过85分的人数 | ||
男 | |||
女 | |||
合计 |
3
4
2
3
附参考公式:
P
(
A
|
B
)
=
1
-
P
(
A
|
B
)
,
P
(
A
|
B
)
•
P
(
B
)
=
P
(
B
|
A
)
•
P
(
A
)
χ
2
=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
α | 0.1 | 0.05 | 0.01 | 0.005 | 0.001 |
xα | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
【考点】离散型随机变量的均值(数学期望).
【答案】(1)列联表见解析,认为了解安全知识的程度与性别有关;
(2)X的分布列为:
数学期望为.
(2)X的分布列为:
X | 0 | 1 | 2 | 3 | 4 |
P | 1 144 |
10 144 |
37 144 |
60 144 |
36 144 |
17
6
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/21 8:0:9组卷:18引用:1难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:197引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7