阿波罗尼斯(公元前262年~公元前190年),古希腊人,与阿基米德、欧几里得一起被誉为古希腊三大数学家.阿波罗尼斯研究了众多平面轨迹问题,其中阿波罗尼斯圆是他的论著中的一个著名问题:已知平面上两点A,B,则所有满足|PA||PB|=λ(λ>0,且λ≠1)的点P的轨迹是一个圆.已知平面内的两个相异定点P(1,0),Q(-1,0),动点M满足|MP|=2|MQ|,记M的轨迹为C,则轨迹C围成图形的面积是( )
|
PA
|
|
PB
|
=
λ
|
MP
|
=
2
|
MQ
|
【考点】轨迹方程.
【答案】C
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/20 3:0:2组卷:22引用:1难度:0.6
相似题
-
1.点P为△ABC所在平面内的动点,满足
=t(AP),t∈(0,+∞),则点P的轨迹通过△ABC的( )AB|AB|cosB+AC|AC|cosC发布:2024/12/29 6:30:1组卷:106引用:3难度:0.7 -
2.已知两个定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|.
(1)求点P的轨迹方程并说明该轨迹是什么图形;
(2)若直线l:y=kx+1分别与点P的轨迹和圆(x+2)2+(y-4)2=4都有公共点,求实数k的取值范围.发布:2024/12/29 10:30:1组卷:42引用:3难度:0.5 -
3.已知四棱锥P-ABCD的底面ABCD为正方形,PD⊥底面ABCD,且PD=AD=4,点E为BC的中点.四棱锥P-ABCD的所有顶点都在同一个球面上,点M是该球面上的一动点,且PM⊥AE,则点M的轨迹的长度为( )
发布:2024/12/29 8:0:12组卷:14引用:1难度:0.6