位于某港口A的小艇要将一件重要物品送到一艘正在航行的海轮上.在小艇出发时,海轮位于港口A北偏东30°且与该港口相距30海里的B处,并正以20海里/时的速度沿正西方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与海轮相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇的航行速度应为多少?
(2)若经过2小时小艇与海轮相遇,则小艇的航行速度应为多少?
(3)假设小艇的最高航行速度只能达到106海里/时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与海轮相遇,并求出其相遇时间.
10
6
【考点】解三角形.
【答案】(1)小艇的航行速度为海里/时;
(2)小艇的航行速度为5海里/时;
(3)当小艇的航行方向为北偏西15°,航速为海里/时,小艇能以最短时间小时和海轮相遇.
20
3
(2)小艇的航行速度为5
13
(3)当小艇的航行方向为北偏西15°,航速为
10
6
3
(
3
-
1
)
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/4 8:0:9组卷:33引用:3难度:0.6
相似题
-
1.已知灯塔A在海洋观察站C的北偏东65°,距离海洋观察站C的距离为akm,灯塔B在海洋观察站C的南偏东55°,距离海洋观察站C的距离为3akm,则灯塔A与灯塔B的距离为( )
发布:2024/12/30 4:0:3组卷:50引用:3难度:0.7 -
2.在①
,②2a-c=2bcosC,③(a-b)(a+b)=(a-c)c这三个条件中任选一个,补充在下面的问题中,并解答该问题.3(a-bcosC)=csinB
在△ABC中,内角A,B,C的对边分别是a,b,c,且满足 _____,.b=23
(1)若a+c=4,求△ABC的面积;
(2)求△ABC周长l的取值范围.发布:2024/12/29 13:0:1组卷:280引用:4难度:0.5 -
3.如图,在铁路建设中,需要确定隧道两端的距离(单位:百米),已测得隧道两端点A,B到某一点C的距离分别为5和8,∠ACB=60°,则A,B之间的距离为( )
发布:2024/12/29 13:0:1组卷:294引用:5难度:0.7