定义:若一个四边形能被其中的一条对角线分割成两个相似三角形,则称这个四边形为“友谊四边形”.我们熟知的平行四边形就是“友谊四边形”,
(1)如图1,在4×4的正方形网格中有一个Rt△ABC,请你在网格中找格点D,使得四边形ABCD是被AC分割成的“友谊四边形”,(要求画出点D的2种不同位置)
(2)如图2,BD平分∠ABC,BD=43,BC=8,四边形ABCD是被BD分割成的“友谊四边形”,求AB长;
(3)如图3,圆内接四边形ABCD中,∠ABC=60,点E是ˆAC的中点,连接BE交CD于点F,连接AF,∠DAF=30°
①求证:四边形ABCF是“友谊四边形”;
②若△ABC的面积为63,求线段BF的长.

3
ˆ
AC
3
【考点】圆的综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/16 4:0:8组卷:739引用:3难度:0.2
相似题
-
1.如图,AB是圆O的直径,弦CD⊥AB于G,射线DO与直线CE相交于点E,直线DB与CE交于点H,且∠BDC=∠BCH.
(1)求证:直线CE是圆O的切线.
(2)如图1,若OG=BG,BH=1,直接写出圆O的半径;
(3)如图2,在(2)的条件下,将射线DO绕D点逆时针旋转,得射线DM,DM与AB交于点M,与圆O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.发布:2025/1/28 8:0:2组卷:782引用:2难度:0.1 -
2.如图,AB是圆O的直径,弦CD与AB交于点H,∠BDC=∠CBE.
(1)求证:BE是圆O的切线;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的长;
(3)如图,若CD∥BE,作DF∥BC,满足BC=2DF,连接FH、BF,求证:FH=BF.发布:2025/1/28 8:0:2组卷:100引用:1难度:0.1 -
3.如图,AB是圆O的直径,AB=6,D是半圆ADB上的一点,C是弧BD的中点.
(1)若∠ABD=30°,求BC的长和由弦BC、BD、和弧CD围成的图形面积;
(2)若弧AD的度数是120度,在半径OB上是否存在点P,使得PC+PD的值最小,如果存在,请在备用图中画出P的位置,并求PC+PD的最小值,如果不存在,请说明理由.发布:2025/1/28 8:0:2组卷:44引用:0难度:0.3