如图,点E在等边△ABC的边BC上,BE=4,射线CD⊥BC,垂足为点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+FP的值最小时,BF=5,则AB的长为( )
【考点】轴对称-最短路线问题;等边三角形的性质.
【答案】A
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/20 1:0:9组卷:1872引用:7难度:0.6
相似题
-
1.如图,在△ABC中,AB=AC=12,∠BAC=120°,点D在AB上,且BD=4,点E是BC上任意一点,则ED+EA的最小值为 .
发布:2025/5/25 10:0:1组卷:209引用:1难度:0.2 -
2.如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4
,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=30发布:2025/5/25 8:0:2组卷:3006引用:5难度:0.3 -
3.如图,在边长为6的正方形ABCD中,E、F分别为边AB、BC的动点,且EF=4,点M为EF的中点,点N为边AD的一动点,则MN+CN的最小值为 .
发布:2025/5/25 8:30:2组卷:150引用:1难度:0.5