已知某项赛事的季后赛后半段有四支战队参加,采取“双败淘汰赛制”,对阵表如图,赛程如下:
第一轮:四支队伍分别两两对阵(即比赛1和2),两支获胜队伍进入胜者组,两支失败队伍落入败者组.
第二轮:胜者组两支队伍对阵(即比赛3),获胜队伍成为胜者组第一名,失败队伍落入败者组;第一轮落入败者组的两支队伍对阵(即比赛4),失败队伍(已两败)被淘汰(获得殿军),获胜队伍留在败者组.
第三轮:败者组两支队伍对阵(即比赛5),失败队伍被淘汰(获得季军),获胜队伍成为败者组第一名.
第四轮:败者组第一名和胜者组第一名决赛(即比赛6),争夺冠军.
假设每场比赛双方获胜的概率均为0.5,每场比赛之间相互独立.
(1)若第一轮队伍A和队伍D对阵,则他们仍能在决赛中对阵的概率是多少?
(2)已知队伍B在上述季后赛后半段所参加的所有比赛中,败了两场,求在该条件下队伍B获得亚军的概率.
【考点】相互独立事件和相互独立事件的概率乘法公式.
【答案】(1);
(2).
1
8
(2)
1
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/4 3:0:1组卷:125引用:6难度:0.7
相似题
-
1.甲、乙两人进行围棋比赛,共比赛2n(n∈N*)局,且每局甲获胜的概率和乙获胜的概率均为
.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则( )12发布:2024/12/29 12:0:2组卷:254引用:6难度:0.6 -
2.小王同学进行投篮练习,若他第1球投进,则第2球投进的概率为
;若他第1球投不进,则第2球投进的概率为23.若他第1球投进概率为13,他第2球投进的概率为( )23发布:2024/12/29 12:0:2组卷:301引用:5难度:0.7 -
3.某市在市民中发起了无偿献血活动,假设每个献血者到达采血站是随机的,并且每个献血者到达采血站和其他的献血者到达采血站是相互独立的.在所有人中,通常45%的人的血型是O型,如果一天内有10位献血者到达采血站献血,用随机模拟的方法来估计一下,这10位献血者中至少有4位的血型是O型的概率.
发布:2024/12/29 11:0:2组卷:1引用:1难度:0.7