已知直线l1:x-y+3=0及点A(-4,7)和点B(1,8),Q为l1上一动点.
(1)求|AQ|+|BQ|的最小值并求出此时点Q的坐标;
(2)在(1)的条件下,直线l2经过点Q且与x轴、y轴分别交于C、D两点,当直线l2与两坐标轴围成的三角形面积取得最小值时,求直线l2的方程.
【考点】直线的一般式方程与直线的性质;两点间的距离公式.
【答案】(1);.
(2)9x+7y-63=0或9x-7y=0.
3
10
Q
(
7
2
,
9
2
)
(2)9x+7y-63=0或9x-7y=0.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:131引用:1难度:0.5
相似题
-
1.已知0<k<4直线L:kx-2y-2k+8=0和直线M:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则这个四边形面积最小值时k值为( )
发布:2024/12/29 2:0:1组卷:327引用:7难度:0.7 -
2.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点为A(0,0),B(5,0),C(2,4),则该三角形的欧拉线方程为( )
发布:2024/11/12 21:0:2组卷:744引用:10难度:0.5 -
3.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点为A(0,0),B(5,0),C(2,4),则该三角形的欧拉线方程为( )
注:重心坐标公式为横坐标:;纵坐标:x1+x2+x33y1+y2+y33发布:2024/10/25 1:0:1组卷:74引用:1难度:0.6