试卷征集
加入会员
操作视频

小明学习了垂径定理后,做了下面的探究,请根据题目要求帮小明完成探究.
(1)更换定理的题设和结论可以得到许多新的发现.如图1,在⊙O中,C是
ˆ
AB
的中点,直线CD⊥AB于点E,则可以得到AE=BE,请证明此结论.

(2)从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦.如图2,古希腊数学家阿基米德发现,若PA、PB是⊙O的折弦,C是
ˆ
AB
的中点,CD⊥PA于点E.则AE=PE+PB.这就是著名的“阿基米德折弦定理”.那么如何来证明这个结论呢?小明的证明思路是:在AE上截取AF=PB,连接CA、CF、PC、BC…请你按照小明的思路完成证明过程.
(3)如图3,已知等边三角形ABC内接于⊙O,AB=2,点D是
ˆ
AC
上的一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长为
2
2
+2
2
2
+2

【考点】圆的综合题
【答案】2
2
+2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/16 13:0:2组卷:278引用:2难度:0.3
相似题
  • 1.如图,AB是圆O的直径,弦CD⊥AB于G,射线DO与直线CE相交于点E,直线DB与CE交于点H,且∠BDC=∠BCH.
    (1)求证:直线CE是圆O的切线.
    (2)如图1,若OG=BG,BH=1,直接写出圆O的半径;
    (3)如图2,在(2)的条件下,将射线DO绕D点逆时针旋转,得射线DM,DM与AB交于点M,与圆O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.

    发布:2025/1/28 8:0:2组卷:782引用:2难度:0.1
  • 2.如图,AB是圆O的直径,弦CD与AB交于点H,∠BDC=∠CBE.
    (1)求证:BE是圆O的切线;
    (2)若CD⊥AB,AC=2,BH=3,求劣弧BC的长;
    (3)如图,若CD∥BE,作DF∥BC,满足BC=2DF,连接FH、BF,求证:FH=BF.

    发布:2025/1/28 8:0:2组卷:100引用:1难度:0.1
  • 3.如图,AB是圆O的直径,AB=6,D是半圆ADB上的一点,C是弧BD的中点.
    (1)若∠ABD=30°,求BC的长和由弦BC、BD、和弧CD围成的图形面积;
    (2)若弧AD的度数是120度,在半径OB上是否存在点P,使得PC+PD的值最小,如果存在,请在备用图中画出P的位置,并求PC+PD的最小值,如果不存在,请说明理由.

    发布:2025/1/28 8:0:2组卷:44引用:0难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正