目前,新冠病毒引起的疫情仍在全球肆虐在党中央的正确领导下,全国人民团结一心,使我国疫情得到了有效的控制.其中,各大药物企业积极投身到新药的研发中.汕头某药企为评估一款新药的药效和安全性,组织一批志愿者进行临床用药实验,结果显示临床疗效评价指标A的数量y与连续用药天数x具有相关关系.刚开始用药时,指标A的数量y变化明显,随着天数增加,y的变化趋缓.根据志愿者的临床试验情况,得到了一组数据(xi,yi),i=1,2,3,4,5,…,10,xi表示连续用药i天,yi表示相应的临床疗效评价指标A的数值.
该药企为了进一步研究药物的临床效果,建立了y关于x的两个回归模型:
模型①:由最小二乘公式可求得y与x的线性回归方程:̂y=2.50x-2.50;
模型②:由样本点的分布,可以认为样本点集中在曲线:y=blnx+a的附近,令t=lnx,则有10∑i=1ti=22.00,10∑i=1yi=230,10∑i=1tiyi=569.00,10∑i=1ti2=50.92.
(1)根据所给的统计量,求模型②中y关于x的回归方程;
(2)根据下列表格中的数据,说明哪个模型的预测值精度更高、更可靠.
(3)根据(2)中精确度更高的模型,预测用药一个月后,疗效评价指标相对于用药半个月的变化情况(一个月以30天计,结果保留两位小数).
̂
y
=
2
.
50
x
-
2
.
50
10
∑
i
=
1
t
i
=
22
.
00
10
∑
i
=
1
y
i
=
230
10
∑
i
=
1
t
i
y
i
=
569
.
00
10
∑
i
=
1
t
i
2
=
50
.
92
回归模型 | 模型① | 模型② |
残差平方和 10 ∑ i = 1 ( y i - ̂ y i ) 2 |
102.28 | 36.19 |
̂
b
=
n
∑
i
=
1
(
t
i
-
t
)
(
y
i
-
y
)
n
∑
i
=
1
(
t
i
-
t
)
2
̂
a
=
y
-
̂
b
t
R
2
=
1
-
n
∑
i
=
1
(
y
i
-
̂
y
)
2
n
∑
i
=
1
(
y
i
-
y
)
2
【考点】经验回归方程与经验回归直线.
【答案】(1).(2)回归模型②刻画的拟合效果更好,理由详见解析.(3)用药一个月后,疗效评价指标相对于用药半个月提高17.33.
̂
y
=
25
lnx
-
32
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:161引用:2难度:0.5
相似题
-
1.某科研机构为了了解气温对蘑菇产量的影响,随机抽取了某蘑菇种植大棚12月份中5天的日产量y(单位:kg)与该地当日的平均气温x(单位:℃)的数据,得到如图散点图:
其中A(3,2),B(5,10),C(8,11),D(9,13),E(10,14).
(1)求出y关于x的线性回归方程;
(2)若该地12月份某天的平均气温为6℃,用(1)中所求的回归方程预测该蘑菇种植大棚当日的产量.
附:线性回归直线方程中,̂y=̂bx+̂a,̂b=n∑i=1xiyi-nxyn∑i=1x2i-nx2.̂a=y-̂bx发布:2024/12/29 11:30:2组卷:104引用:3难度:0.7 -
2.两个线性相关变量x与y的统计数据如表:
x 9 9.5 10 10.5 11 y 11 10 8 6 5 =̂yx+40,则相应于点(9,11)的残差为 .̂b发布:2024/12/29 12:0:2组卷:116引用:8难度:0.7 -
3.某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图1),以及实验室每天每100颗种子中的发芽数情况(如图2),得到如下资料:
(1)请画出发芽数y与温差x的散点图;
(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;
(3)①求出发芽数y与温差x之间的回归方程(系数精确到0.01);̂y=̂a+̂bx
②若12月7日的昼夜温差为8℃,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.
参考数据:=2051,6∑i=1xi=75,6∑i=1yi=162,6∑i=1xiyi≈4.2,6∑i=1xi2-6x2≈6.5.6∑i=1yi2-6y2
参考公式:
相关系数:r=(当|r|>0.75时,具有较强的相关关系).n∑i=1xiyi-nx•y(n∑i=1xi2-nx2)(n∑i=1yi2-ny2)
回归方程中斜率和截距计算公式:̂y=̂a+̂bx=̂b,n∑i=1xiyi-nx•yn∑i=1xi2-nx2=̂ay-̂b.x发布:2024/12/29 12:0:2组卷:189引用:5难度:0.5
相关试卷