已知:如图,在矩形ABCD中,AB=24cm,BC=16cm,点E为边CD的中点,连接BE,EF⊥BE交AD于点F.点P从点B出发,沿BE方向匀速运动,速度为2cm/s;同时,点Q从点A出发,沿AB方向匀速运动,速度为3cm/s,当一个点停止运动时,另一个点也停止运动.设运动时间为t(s)(0<t<8).解答下列问题:
(1)当t为何值时,点P在线段BQ的垂直平分线上?
(2)连接PQ,设五边形AFEPQ的面积为y(cm2 ),求y与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使点Q在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.
【考点】四边形综合题.
【答案】(1)当t= 时,点P在线段BQ的垂直平分线上;
(2)y=;
(3)存在,t的值是.
40
9
(2)y=
12
5
t
2
-
96
5
t
+
234
(3)存在,t的值是
14
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/27 8:0:10组卷:250引用:1难度:0.4
相似题
-
1.(1)如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;
(2)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF=∠BAD,求证:EF=BE+DF;12
(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠EAF=∠BAD,则结论EF=BE+DF是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.12发布:2025/6/20 1:0:2组卷:1509引用:2难度:0.5 -
2.问题:如图①,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】将△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图①证明上述结论
【类比引申】
如图②,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.
【探究应用】
如图③,在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=(40-40)米,现要在E、F之间修一条笔直道路,求这条道路EF的长.3发布:2025/6/20 1:30:2组卷:859引用:2难度:0.2 -
3.在正方形ABCD中,AB=4,O为对角线AC、BD的交点.
(1)如图1,延长OC,使CE=OC,作正方形OEFG,使点G落在OD的延长线上,连接DE、AG.求证:DE=AG;
(2)如图2,将问题(1)中的正方形OEFG绕点O逆时针旋转α(0<α<180°),得到正方形OE′F′G′,连接AE′、E′G′.
①当α=30°时,求点A到E′G′的距离;
②在旋转过程中,求△AE′G′面积的最小值,并求此时的旋转角α.发布:2025/6/20 1:30:2组卷:540引用:3难度:0.2