某小区业主委员会决定把一块长50m,宽30m的矩形空地建成健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的矩形),空白区域为活动区,且四周的4个出口宽度相同,设绿化区较长边为x m(12≤x≤18),活动区的面积为y m2.
(1)求y与x的函数关系式;
(2)若活动区造价为50元/m2,绿化区造价为40元/m2,则绿化区边长怎么设计,健身广场投资费用最少,并求出最少费用.
【答案】(1)y=50×30-4x(x-10),
(2)当绿化区较长边为18m时,健身广场投资费用最少,最小费用为69240元.
(2)当绿化区较长边为18m时,健身广场投资费用最少,最小费用为69240元.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/19 14:0:1组卷:19引用:1难度:0.5
相似题
-
1.小明同学利用寒假30天时间贩卖草莓,了解到某品种草莓成本为10元/千克,在第x天的销售量与销售单价如下(每天内单价和销售量保持一致):
销售量m(千克) m=40-x 销售单价n(元/千克) 当1≤x≤15时,n=20+ x12当16≤x≤30时,n=10+ 300x
(1)请计算第几天该品种草莓的销售单价为25元/千克?
(2)这30天中,该同学第几天获得的利润最大?最大利润是多少?注:利润=(售价-成本)×销售量
(3)在实际销售的前15天中,草莓生产基地为刺激销售,鼓励销售商批发草莓,每批发1千克就发给a(a≥2)元奖励.通过销售记录发现,前8天中,每天获得奖励后的利润随时间x(天)的增大而增大,试求a的取值范围.12发布:2025/6/18 3:0:1组卷:593引用:2难度:0.5 -
2.心理学家发现:学生对提出概念的接受能力y与提出概念的时间x(min)之间满足二次函数关系y=-0.1x2+2.6x+43.则使学生对概念的接受能力最大.则提出概念的时间应为( )
发布:2025/6/18 3:30:2组卷:139引用:2难度:0.8 -
3.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为 m2.
发布:2025/6/18 2:0:1组卷:4327引用:11难度:0.5