试卷征集
加入会员
操作视频

中国古代许多著名数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,所讨论的二阶等差数列与一般等差数列不同,前后两项之差并不相等,但是后项减前项之差组成的新数列是等差数列.现有一个“堆垛”,共50层,第一层2个小球,第二层5个小球,第三层10个小球,第四层17个小球,…,按此规律,则第50层小球的个数为(  )

【考点】归纳推理
【答案】D
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 8:0:9组卷:211引用:9难度:0.6
相似题
  • 1.按数列的排列规律猜想数列
    2
    3
    -
    4
    5
    8
    7
    -
    16
    9
    ,…的第10项是(  )

    发布:2024/12/29 13:30:1组卷:105引用:6难度:0.8
  • 2.根据给出的数塔猜测123456×9+7=(  )
    1×9+2=11
    12×9+3=111
    123×9+4=1111
    1234×9+5=11111
    12345×9+6=111111

    发布:2024/12/29 11:0:2组卷:545引用:8难度:0.9
  • 3.如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n层有an个球,上往下n层球的总数为Sn,则(  )

    发布:2024/12/29 6:30:1组卷:112引用:7难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正