在平面直角坐标系xOy中,直线y=-12x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.
(1)求线段AB的长;
(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=5,求这条抛物线的表达式;
(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.
1
2
5
【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:3684引用:10难度:0.4
相似题
-
1.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(-3,-3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线
.y=9x
(1)下列说法不正确的是 .
A.直线y=x的图象上有无数个“不动点”
B.函数的图象上没有“不动点”y=-1x
C.直线y=x+1的图象上有无数个“不动点”
D.函数y=x2的图象上有两个“不动点”
(2)求双曲线上的“不动点”;y=9x
(3)若抛物线y=ax2-3x+c(a、c为常数)上有且只有一个“不动点”,
①当a>1时,求c的取值范围.
②如果a=1,过双曲线图象上第一象限的“不动点”作平行于x轴的直线l,若抛物线上有四个点到l的距离为m,直接写出m的取值范围.y=9x发布:2025/5/24 13:30:2组卷:1194引用:10难度:0.3 -
2.如图①,抛物线y=ax2+bx+3与x轴交于A(-3,0),B(1,0)两点(点A位于点B的左侧),与y轴交于点C.
(1)求抛物线的解析式;
(2)抛物线的对称轴上是否存在点M,使得S△MAC=S△ABC?若存在,请求出点M的坐标,若不存在,请说明理由.
(3)如图②,P是抛物线上一点,点Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.发布:2025/5/24 13:30:2组卷:77引用:1难度:0.1 -
3.如图,顶点为M的抛物线
与x轴交于A(3,0),B(-1,0)两点,与y轴交于点C.L1:y=ax2+bx+3
(1)求抛物线L1顶点M的坐标;
(2)平移抛物线L1得到新抛物线L2,使得新抛物线L2经过原点O,且与x轴另一交点为E,若△EAM为直角三角形,请求出满足条件的新抛物线L2的表达式.发布:2025/5/24 13:30:2组卷:653引用:1难度:0.4