本期,我们学习了用赵爽弦图证明勾股定理.在如图所示的赵爽弦图中,在DH上取点M使得DM=GH,连接AM、CM.若正方形EFGH的面积为6,则△ADM与△CDM的面积之差为( )
【答案】A
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/29 15:0:9组卷:993引用:6难度:0.5
相似题
-
1.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于.
发布:2025/6/23 0:0:1组卷:9105引用:71难度:0.7 -
2.如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为
发布:2025/6/24 12:30:2组卷:896引用:13难度:0.9 -
3.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是( )
发布:2025/6/21 17:0:2组卷:1052引用:15难度:0.7