如图1,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=-(x-m)2+m+2的顶点.
(1)直接写出顶点P的坐标;(用m表示)
(2)当m=0时,判断(1,1)是否在抛物线上,并直接写出该抛物线下方(含边界)的好点个数;
(3)当m=3时,直接写出该抛物线上的好点坐标;
(4)若点P在正方形OABC内部,该抛物线下方(含边界)恰好存在8个好点,直接写出m的取值范围.

【考点】二次函数综合题.
【答案】(1)(m,m+2);
(2)当m=0时,(1,1)在抛物线上;好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个;
(3)(1,1),(2,4),(4,4);
(4)≤m<1.
(2)当m=0时,(1,1)在抛物线上;好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个;
(3)(1,1),(2,4),(4,4);
(4)
5
-
13
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/1 6:0:1组卷:237引用:2难度:0.2
相似题
-
1.已知点P是二次函数y1=-(x-m+1)2+m2-m-1图象的顶点.
(1)小明发现,对m取不同的值时,点P的位置也不同,但是这些点都在某一个函数的图象上,请协助小明完成对这个函数的表达式的探究:
①将下表填写完整:m -1 0 1 2 3 P点坐标 (-2,1) (-1,-1)
(2)若过点(0,2),且平行于x轴的直线与y1=-(x-m+1)2+m2-m-1的图象有两个交点A和B,与②中得到的函数的图象有两个交点C和D,当AB=CD时,直接写出m的值等于 ;
(3)若m≥2,点Q在二次函数y1=-(x-m+1)2+m2-m-1的图象上,横坐标为m,点E在②中得到的函数的图象上,当∠EPQ=90°时,求出E点的横坐标(用含m的代数式表示).发布:2025/5/25 18:30:1组卷:259引用:1难度:0.3 -
2.已知点P(m,n)在抛物线y=ax2+2x+1上运动.
(1)当a=-1时,若点P到y轴的距离小于2,求n的取值范围;
(2)当-4≤m≤0时,n的最大值是1,求a的取值范围.发布:2025/5/25 18:30:1组卷:205引用:2难度:0.4 -
3.抛物线y=-
x2+bx+b+1的顶点为C,与x轴相交于点A,B,与y轴交于点D,已知点E的坐标为(1,0).12
(1)求该抛物线经过定点F的坐标.
(2)当∠CDE=90°时,求b的值.
(3)线段FC与DE能否相等?若相等,判断此时这两线段的位置关系,并证明你的结论,求出b的值.发布:2025/5/25 19:0:2组卷:101引用:1难度:0.3