在创建“全国文明城市”过程中,我市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识网络问卷调查(一位市民只能参加一次),共有100000名市民提交了问卷,现从提交问卷的市民中随机地抽取100人的得分统计结果如表所示:
得分(百分制) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 10 | 15 | 25 | 35 | 15 |
(2)由样本数据分析可知,该市全体参加问卷的市民得分Z服从正态分布N(μ,49),其中μ可近似为样本中的100名市民得分的平均值(同一组数据用该组数据的中间值代替),利用该正态分布,估计全市参加问卷的全体市民中得分在[85,92]分的人数;
(3)为了鼓励市民积极参与创建文明城,问卷得分不低于92分的市民可继续参与答题赠话费活动,规则如下:
①参加答题的市民的初始分都设置为100分;
②参加答题的市民可在答题前自己决定答题数量n(n≤20,n∈N*),每一题都需要用一定分数来获取答题资格(即用分数来买答题资格),规定答第k题时所需的分数为0.1k(k=1,2,⋯,n);
③每答对一题得2分,答错得0分;
④答完n题后参加答题市民的最终分数即为获得的话费数(单位:元).
已知市民甲答对每道题的概率均为0.6,且每题答对与否都相互独立,则当他的答题数量n为多少时,他获得的平均话费最多?
参考数据:若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)≈0.6827,P(μ-2σ<Z<μ+2σ)≈0.9545,P(μ-3σ<Z<μ+3σ)≈0.9973
【考点】离散型随机变量的均值(数学期望).
【答案】(1);
(2)13590;
(3)11或12.
7
267
(2)13590;
(3)11或12.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/8 8:0:8组卷:22引用:1难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:196引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7