已知集合M是满足下列性质的函数f(x)的全体,存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a-x)成立,称数对(a,k)为函数f(x)的“伴随数对”
(1)判断f(x)=x2是否属于集合M,并说明理由;
(2)若函数f(x)=sinx∈M,求满足条件的函数f(x)的所有“伴随数对”;
(3)若(1,1),(2,-1)都是函数f(x)的“伴随数对”,当1≤x<2时,f(x)=cos(π2x);当x=2时,f(x)=0.求当2014≤x≤2016时,函数y=f(x)的零点.
f
(
x
)
=
cos
(
π
2
x
)
【考点】函数与方程的综合运用.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:110引用:4难度:0.3