当前位置:
试题详情
已知动圆P与定圆B:x2+y2+2x-35=0内切,且动圆经过一定点A(1,0).
(1)求动圆圆心P的轨迹方程;
(2)过点B(圆心)的直线与点P的轨迹交于M,N两点,求△AMN面积的最大值.
【答案】(1).
(2).
x
2
9
+
y
2
8
=
1
(2)
48
9
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:70引用:2难度:0.1
相似题
-
1.一个酒杯的截面是抛物线的一部分,其方程x2=2y(0≤y≤20),杯内放入一个球,要使球触及杯底部,则球的半径的取值范围为( )
发布:2025/1/5 23:30:4组卷:59引用:1难度:0.5 -
2.已知双曲线C:
-x2a2=1(a>0,b>0)的左,右顶点分别是A1,A2,圆x2+y2=a2与C的渐近线在第一象限的交点为M,直线A1M交C的右支于点P,若△MPA2是等腰三角形,且∠PA2M的内角平分线与y轴平行,则C的离心率为( )y2b2发布:2024/12/17 19:30:2组卷:310引用:5难度:0.6 -
3.已知点M(1,2),点P在抛物线y2=8x上运动,点Q在圆(x-2)2+y2=1上运动,则|PM|+|PQ|的最小值为( )
发布:2024/12/28 23:0:1组卷:211引用:2难度:0.8