如图1,在平面直角坐标系中,直线l:y=kx+b与x轴交于点A,与y轴交于点B,与直线CD相交于点D,其中AC=14,C(-6,0),D(2,8).
(1)求直线l的函数表达式;
(2)如图2,点M为y轴上一动点,连接AM、DM,求AM+DM的最小值和此时点M的坐标;
(3)如图3,在(2)问的条件下,将直线l沿射线DC的方向平移,使得平移后的直线经过点M.若点E为直线CD上一动点,F为平移后新直线上一动点,使以点O、D、E、F为顶点的四边形为平行四边形,写出所有符合条件的点E的横坐标,并写出求解点E的横坐标的其中一种情况的过程.

【考点】一次函数综合题.
【答案】(1)y=-x+;
(2)AM+DM的最小值为2,此时点M的坐标为(0,);
(3)所有符合条件的点E的横坐标为-或或-,过程见解析.
4
3
32
3
(2)AM+DM的最小值为2
41
32
5
(3)所有符合条件的点E的横坐标为-
26
35
166
35
22
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/4 8:0:5组卷:278引用:2难度:0.3
相似题
-
1.如图,平面直角坐标系中,CB∥OA,∠OCB=90°,CB=2,OC=4,直线
过A点,且与y轴交于D点.y=-12x+2
(1)求点A、点B的坐标;
(2)试说明:AD⊥BO;
(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.发布:2024/12/23 19:30:2组卷:1232引用:3难度:0.4 -
2.如图,在梯形ABCD中,AD∥BC,AB=CD,以边BC所在直线为x轴,边BC的中点O为原点建立直角坐标平面,已知点B的坐标为(-4,0),直线AB的解析式为y=2x+m.
(1)求m的值;
(2)求直线CD的解析式;
(3)若点A在第二象限,是否存在梯形ABCD,它的面积为30?若存在,请求出点A的坐标;若不存在,请说明理由.发布:2025/1/21 8:0:1组卷:5引用:0难度:0.3 -
3.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式;
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(-,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.52发布:2024/12/23 17:30:9组卷:4670引用:6难度:0.3