已知直线l1,l2的方程分别是l1:x=0,l2:3x-4y=0,点A的坐标为(1,a) (a>34).过点A的直线l的斜率为k,且与l1,l2分别交于点M,N(M,N的纵坐标均为正数).
(1)若k=-1,且A为线段MN中点,求实数a的值及△AON的面积;
(2)是否存在实数a,使得1|OM|+1|ON|的值与k无关?若存在,求出所有这样的实数a;若不存在,说明理由.
(
1
,
a
)
(
a
>
3
4
)
1
|
OM
|
+
1
|
ON
|
【考点】直线的一般式方程与直线的性质.
【答案】(1),面积为;
(2)存在;a=2.
a
=
5
2
7
4
(2)存在;a=2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/12 18:0:1组卷:63引用:3难度:0.6
相似题
-
1.已知0<k<4直线L:kx-2y-2k+8=0和直线M:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则这个四边形面积最小值时k值为( )
发布:2024/12/29 2:0:1组卷:324引用:7难度:0.7 -
2.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点为A(0,0),B(5,0),C(2,4),则该三角形的欧拉线方程为( )
发布:2024/11/12 21:0:2组卷:736引用:10难度:0.5 -
3.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点为A(0,0),B(5,0),C(2,4),则该三角形的欧拉线方程为( )
注:重心坐标公式为横坐标:;纵坐标:x1+x2+x33y1+y2+y33发布:2024/10/25 1:0:1组卷:71引用:1难度:0.6