已知:平面直角坐标系中,如图1,点A(a,b),AB⊥x轴于点B,并且满足a+4+|b-4|=0.
(1)试判断△AOB的形状,并说明理由.
(2)如图2,若点C为线段AB的中点,连OC并作OD⊥OC,且OD=OC,连AD交x轴于点E,求证:BC=2BE.
(3)如图3,点M为点B的左边x轴负半轴上一动点,以AM为一边作∠MAN=45°交y轴负半轴于点N,连MN,将△AMN沿直线AN翻折,点M的对应点为M′,点P是x轴上的一动点,当OM′=12AB且△PAM′的周长最小时,请直接写出S△PAM′S△PMM′的值.

a
+
4
+
|
b
-
4
|
=
0
OM
′
=
1
2
AB
S
△
PAM
′
S
△
PMM
′
【考点】几何变换综合题.
【答案】(1)△AOB是等腰直角三角形.理由见解答过程;
(2)证明见解答过程;
(3).
(2)证明见解答过程;
(3)
8
7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/25 2:0:2组卷:139引用:3难度:0.4
相似题
-
1.问题背景
如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.
尝试应用
如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.DFDE
拓展创新
如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.发布:2025/5/26 3:0:2组卷:4451引用:14难度:0.4 -
2.【发现奥秘】
(1)如图1,在等边三角形ABC中,AB=2,点E是△ABC内一点,连接AE,EC,BE,分别将AC,EC绕点C顺时针旋转60°得到DC,FC,连接AD,DF,EF.当B,E,F,D四个点满足 时,BE+AE+CE的值最小,最小值为 .
【解法探索】
(2)如图2,在△ABC中,∠ACB=90°,AC=BC,点P是△ABC内一点,连接PA,PB,PC,请求出当PA+PB+PC的值最小时∠BCP的度数,并直接写出此时PA:PB:PC的值.(提示:分别将PC,AC绕点C顺时针旋转60°得到DC,EC,连接PD,DE,AE)
【拓展应用】
(3)在△ABC中,∠ACB=90°,∠BAC=30°,BC=2,点P是△ABC内一点,连接PA,PB,PC,直接写出当PA+PB+PC的值最小时,PA:PB:PC的值.发布:2025/5/26 0:30:1组卷:232引用:1难度:0.4 -
3.如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.
(1)证明:△AHB≌△AGC;
(2)如图2,连接GF,HG,HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②若AG=QG,AB=AC=4,求EH的长度.发布:2025/5/26 1:0:1组卷:181引用:1难度:0.3