与学生安全有关的问题越来越受到社会的关注和重视.为了普及安全教育,某市组织了一次学生安全知识竞赛,要求每支代表队3人,在必答题环节规定每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为34,乙队三个人回答问题正确的概率分别为12,23,35,且各人回答问题正确与否相互之间没有影响.记事件Ai:甲队第i人答对,事件Bi:乙队第i人答对,其中i=1,2,3.
(1)求甲队至少得1分的概率;
(2)求甲队总得分为3分且乙队总得分为1分的概率.
3
4
1
2
,
2
3
,
3
5
【考点】相互独立事件和相互独立事件的概率乘法公式.
【答案】(1);
(2).
63
64
(2)
81
640
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/18 8:0:8组卷:36引用:3难度:0.6
相似题
-
1.甲、乙两人进行围棋比赛,共比赛2n(n∈N*)局,且每局甲获胜的概率和乙获胜的概率均为
.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则( )12发布:2024/12/29 12:0:2组卷:254引用:6难度:0.6 -
2.小王同学进行投篮练习,若他第1球投进,则第2球投进的概率为
;若他第1球投不进,则第2球投进的概率为23.若他第1球投进概率为13,他第2球投进的概率为( )23发布:2024/12/29 12:0:2组卷:304引用:5难度:0.7 -
3.某市在市民中发起了无偿献血活动,假设每个献血者到达采血站是随机的,并且每个献血者到达采血站和其他的献血者到达采血站是相互独立的.在所有人中,通常45%的人的血型是O型,如果一天内有10位献血者到达采血站献血,用随机模拟的方法来估计一下,这10位献血者中至少有4位的血型是O型的概率.
发布:2024/12/29 11:0:2组卷:1引用:1难度:0.7