草莓具有较高的营养价值、医疗价值和生态价值.草莓浆果芳香多汁,营养丰富,素有“水果皇后”的美称.某草莓园统计了最近100天的草莓日销售量(单位:千克),数据如下所示.
销售量区间 | 天数 |
[150,200) | 20 |
[200,250) | 25 |
[250,300) | 10 |
[300,350) | 40 |
[350,400) | 5 |
(2)该草莓的售价为60元每千克,为了增加草莓销售量,该草莓园推出“玩游戏,送优惠”活动,有以下两种游戏方案供顾客二选一.

游戏一:不透明盒子里装有2个红球,4个黑球,顾客从中不放回摸出3个球,每摸出一个红球每千克草莓优惠3元,摸出黑球不优惠.
游戏二:一张纸板共画了11个同心圆,圆心处标记数字0,从内到外的圆环内依次标记数字1到10,在圆心处有一颗骰子,顾客抛掷硬币决定骰子从圆心向外环移动,若掷出的硬币正面向上,则骰子向外移动一环(如:从圆心移动到标上数字1的环内);若掷出的硬币反面向上,则骰子向外移动两环(如:从标上数字1的环内移动到标上数字3的环内).顾客重复掷硬币直到骰子移到标上数字9的环就可以获得“九折优惠券”,或移到标上数字10的环就游戏结束无优惠.有两个孩子对于选择哪个游戏可以获得更大优惠出现了分歧,你能帮助他们判断吗?
【考点】离散型随机变量的均值(数学期望).
【答案】(1)a=0.005,平均数为267.5;
(2)选择游戏二获得更大优惠的可能性更大.
(2)选择游戏二获得更大优惠的可能性更大.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/9 8:0:8组卷:18引用:2难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:196引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7