已知函数f(x)=x2-3mx+n(m>0)的两个零点分别为1和2.
(1)求m、n的值;
(2)若不等式f(x)-k>0在x∈[0,5]恒成立,求k的取值范围.
(3)令g(x)=f(x)x,若函数F(x)=g(2x)-r2x在x∈[-1,1]上有零点,求实数r的取值范围.
g
(
x
)
=
f
(
x
)
x
【考点】函数零点的判定定理;二次函数的性质与图象.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/12 3:0:1组卷:798引用:7难度:0.3
相似题
-
1.设函数
,若函数g(x)=f(x)-b有三个零点,则实数b的取值范围是( )f(x)=|lnx|,x>0ex(x+1),x≤0发布:2024/12/29 12:0:2组卷:299引用:5难度:0.7 -
2.函数
的零点所在的区间是( )f(x)=ln(1-x)-13x-2发布:2024/12/30 19:30:5组卷:122引用:3难度:0.7 -
3.已知定义在R上的函数f(x)满足f(x+2)=f(x),当x∈[-1,1]时,f(x)=x2,函数g(x)=
,若函数h(x)=f(x)-g(x)在区间[-5,5]上恰有8个零点,则a的取值范围为loga(x-1)x>12xx≤1
( )发布:2024/12/29 13:0:1组卷:443引用:8难度:0.7