已知函数f(x)=2x2+ax,且f(1)=3.
(1)求函数f(x)在(-∞,0)上的单调区间,并给出证明;
(2)设关于x的方程f(x)=x+b的两根为x1,x2,试问是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意的b∈[2,13]及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,说明理由.
2
x
2
+
a
x
b
∈
[
2
,
13
]
【考点】函数恒成立问题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/17 8:0:9组卷:115引用:4难度:0.3
相似题
-
1.把符号
称为二阶行列式,规定它的运算法则为aamp;bcamp;d.已知函数aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函数,若对∀x∈[-1,1],∀θ∈R,都有g(x)-1≥f(θ)恒成立,求实数λ的取值范围.g(x)=x2amp;-11amp;1x2+1发布:2024/12/29 10:30:1组卷:14引用:6难度:0.5 -
2.对于任意x1,x2∈(2,+∞),当x1<x2时,恒有
成立,则实数a的取值范围是alnx2x1-2(x2-x1)<0发布:2024/12/29 7:30:2组卷:64引用:3难度:0.6 -
3.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是.
发布:2024/12/29 5:0:1组卷:547引用:37难度:0.5