设函数f(x)=b2x-t+1bx(b>0,b≠1)是定义域为R的奇函数.
(1)求f(x);
(2)若f(2)<0,求使不等式f(kx+x2)+f(x+1)<0对一切x∈R恒成立的实数k的取值范围;
(3)若函数f(x)的图象过点(1,32),是否存在正数a(a≠1),使函数g(x)=loga[b2x+b-2x-2f(x)+a-1]在[-1,0]上的最大值为2,若存在,求出a的值;若不存在,请说明理由.
b
2
x
-
t
+
1
b
x
3
2
【答案】(1)f(x)=bx-b-x;(2)(-3,1);(3)存在正数a,且为.
1
+
26
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:132引用:6难度:0.5
相似题
-
1.对于任意x1,x2∈(2,+∞),当x1<x2时,恒有
成立,则实数a的取值范围是alnx2x1-2(x2-x1)<0发布:2024/12/29 7:30:2组卷:64引用:3难度:0.6 -
2.把符号
称为二阶行列式,规定它的运算法则为aamp;bcamp;d.已知函数aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函数,若对∀x∈[-1,1],∀θ∈R,都有g(x)-1≥f(θ)恒成立,求实数λ的取值范围.g(x)=x2amp;-11amp;1x2+1发布:2024/12/29 10:30:1组卷:14引用:6难度:0.5 -
3.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是.
发布:2024/12/29 5:0:1组卷:547引用:37难度:0.5