试卷征集
加入会员
操作视频

【问题引领】
问题1:如图1,在四边形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分别是AB,AD上的点.且∠ECF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接CG,先证明△CBE≌△CDG,再证明△CEF≌△CGF.他得出的正确结论是
BE+FD=EF
BE+FD=EF


【探究思考】
问题2:如图2,若将问题1的条件改为:四边形ABCD中,CB=CD,∠ABC+∠ADC=180°,∠ECF=
1
2
∠BCD,问题1的结论是否仍然成立?请说明理由.
【拓展延伸】
问题3:如图3在问题2的条件下,若点E在AB的延长线上,点F在DA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE、DF、EF之间存在什么样的等量关系?并说明理由.

【考点】三角形综合题
【答案】BE+FD=EF
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/17 2:0:1组卷:1249引用:14难度:0.1
相似题
  • 1.如图1,已知点B(0,9),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.

    (1)求证:DE=BO;
    (2)如图2,当点D恰好落在BC上时.
    ①求点E的坐标;
    ②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;
    ③如图3,点M是线段BC上的动点(点B,点C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.

    发布:2025/6/13 6:0:2组卷:1705引用:7难度:0.1
  • 2.【阅读】
    定义:如果一个三角形有两个内角的差为90°,那么这样的三角形叫做“准直角三角形”.
    【理解】
    (1)①若∠A=60°,∠B=15°,则△ABC
    “准直角三角形”;(填“是”或“不是”)
    ②已知△ABC是“准直角三角形”,且∠C>90°,∠A=40°,则∠B的度数为

    【应用】
    (2)如图,在△ABC中,点D在AC上,连接BD.若BD=AD,AC=18,BC=12,AD:CD=5:13,试说明△ABC是“准直角三角形”.

    发布:2025/6/13 7:0:2组卷:164引用:4难度:0.3
  • 3.小明遇到这样一个问题:△ABC是等边三角形,点D在射线BC上,且满足∠ADE=60°,DE交等边△ABC外角平分线CE于点E,试探究AD与DE的数量关系.
    (1)(初步探究)
    小明发现,当点D为BC的中点时,如图①,过点D作DF∥AC,交AB于点F,通过构造全等三角形,经过推理论证,能够得到线段AD与DE的数量关系,请直接写出结论;
    (2)(类比探究)
    当点D是线段BC上(不与点B,C重合)任意一点时,其他条件不变,如图②,试猜想AD与DE之间的数量关系,并证明你的结论;
    (3)(拓展应用)
    当点D在BC的延长线上时,满足CD=BC,其他条件不变,连接AE,请在图③中补全图形,并直接写出∠AED的大小.

    发布:2025/6/13 5:30:2组卷:239引用:2难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正