已知函数f(x)=12ax2-lnx,(a∈Z).
(1)当a=1时,求f(x)的极值;
(2)若不等式f(x)≥(1-a)x+1恒成立,求a的最小值.
1
2
a
x
2
【考点】利用导数研究函数的极值;利用导数研究函数的最值.
【答案】(1)f(x)极小值=f(1)=,无极大值;
(2)整数a的最小值为2.
1
2
(2)整数a的最小值为2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/27 6:0:10组卷:294引用:4难度:0.3
相似题
-
1.已知函数f(x)=(x-a)lnx(a∈R),它的导函数为f'(x).
(1)当a=1时,求f'(x)的零点;
(2)若函数f(x)存在极小值点,求a的取值范围.发布:2024/12/29 13:0:1组卷:279引用:8难度:0.4 -
2.若函数
有两个极值点,则实数a的取值范围为( )f(x)=e2x4-axex发布:2024/12/29 13:30:1组卷:123引用:4难度:0.5 -
3.定义:设f'(x)是f(x)的导函数,f″(x)是函数f'(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图像的对称中心,已知函数
的对称中心为(1,1),则下列说法中正确的有( )f(x)=ax3+bx2+53(ab≠0)发布:2024/12/29 13:30:1组卷:181引用:7难度:0.5