试卷征集
加入会员
操作视频

已知双曲线C:
x
2
a
2
-
y
2
b
2
=1(a>0,b>0)的离心率为
5
2
,右顶点A到C的一条渐近线的距离为
2
5
5

(1)求C的方程;
(2)D,E是y轴上两点,以DE为直径的圆M过点B(-3,0),若直线DA与C的另一个交点为P,直线EA与C的另一个交点为Q,试判断直线PQ与圆M的位置关系,并说明理由.

【答案】(1)
x
2
4
-
y
2
=
1

(2)直线PQ与圆M相交,理由见解答.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/14 1:0:8组卷:168引用:6难度:0.2
相似题
  • 1.已知双曲线C上的所有点构成集合P={(x,y)|ax2-by2=1(a>0,b>0)}和集合Q={(x,y)|0<ax2-by2<1(a>0,b>0)},坐标平面内任意点N(x0,y0),直线l:ax0x-by0y=1称为点N关于双曲线C的“相关直线”.
    (1)若N∈P,判断直线l与双曲线C的位置关系,并说明理由;
    (2)若直线l与双曲线C的一支有2个交点,求证:N∈Q;
    (3)若点N∈Q,点M在直线l上,直线MN交双曲线C于A,B,求证:
    |
    MA
    |
    |
    AN
    |
    =
    |
    MB
    |
    |
    BN
    |

    发布:2024/8/8 8:0:9组卷:215引用:6难度:0.3
  • 2.定义曲线
    a
    2
    x
    2
    -
    b
    2
    y
    2
    =
    1
    为双曲线
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    的“伴随曲线”.在双曲线C1:x2-y2=1的伴随曲线C2上任取一点P,过P分别作x轴、y轴的垂线,垂足分别为M、N,则直线MN与曲线C1的公共点的个数为(  )

    发布:2024/4/23 12:26:7组卷:44引用:2难度:0.7
  • 3.圆x2+y2-4x+3=0与双曲线
    x
    2
    16
    -
    y
    2
    9
    =
    1
    的渐近线的位置关系为(  )

    发布:2024/6/20 8:0:9组卷:86引用:1难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正