如图,曲线Γ由两个椭圆T1:x2a2+y2b2=1(a>b>0)和椭圆T2:y2b2+x2c2=1(b>c>0)组成,当a,b,c成等比数列时,称曲线Γ为“猫眼曲线”.
(1)若猫眼曲线Γ过点M(0,-2),且a,b,c的公比为22,求猫眼曲线Γ的方程;
(2)对于题(1)中的求猫眼曲线Γ,任作斜率为k(k≠0)且不过原点的直线与该曲线相交,交椭圆T1所得弦的中点为M,交椭圆T2所得弦的中点为N,求证:kOMkON为与k无关的定值;
(3)若斜率为2的直线l为椭圆T2的切线,且交椭圆T1于点A,B,N为椭圆T1上的任意一点(点N与点A,B不重合),求△ABN面积的最大值.
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
y
2
b
2
+
x
2
c
2
=
1
(
b
>
c
>
0
)
M
(
0
,-
2
)
2
2
k
OM
k
ON
2
【考点】椭圆的几何特征.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/12 16:0:8组卷:1008引用:9难度:0.5
相似题
-
1.阿基米德(公元前287年-公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在x轴上,且椭圆C的离心率为
,面积为8π,则椭圆C的方程为( )32发布:2024/12/29 12:0:2组卷:229引用:7难度:0.5 -
2.已知椭圆C的两焦点分别为
、F1(-22,0),长轴长为6.F2(22,0)
(1)求椭圆C的标准方程;
(2)求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.发布:2024/12/29 11:30:2组卷:444引用:6难度:0.8 -
3.已知椭圆
=1(a>b>0)的一个焦点为F(2,0),椭圆上一点P到两个焦点的距离之和为6,则该椭圆的方程为( )x2a2+y2b2发布:2024/12/29 12:30:1组卷:12引用:2难度:0.7