设椭圆C:x22+y2=1的左、右焦点分别为F1,F2,P是C上的动点,则下列四个结论正确的个数( )
①|PF1|+|PF2|=22;
②离心率e=32;
③△PF1F2面积的最大值为2;
④以线段F1F2为直径的圆与直线x+y-2=0相切.
C
:
x
2
2
+
y
2
=
1
|
P
F
1
|
+
|
P
F
2
|
=
2
2
e
=
3
2
2
x
+
y
-
2
=
0
【考点】椭圆的几何特征.
【答案】B
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/21 8:0:10组卷:289引用:4难度:0.5
相似题
-
1.阿基米德(公元前287年-公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在x轴上,且椭圆C的离心率为
,面积为8π,则椭圆C的方程为( )32发布:2024/12/29 12:0:2组卷:229引用:7难度:0.5 -
2.已知椭圆C的两焦点分别为
、F1(-22,0),长轴长为6.F2(22,0)
(1)求椭圆C的标准方程;
(2)求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.发布:2024/12/29 11:30:2组卷:444引用:6难度:0.8 -
3.已知椭圆
=1(a>b>0)的一个焦点为F(2,0),椭圆上一点P到两个焦点的距离之和为6,则该椭圆的方程为( )x2a2+y2b2发布:2024/12/29 12:30:1组卷:12引用:2难度:0.7