某公司在一次年终总结会上举行抽奖活动,在一个不透明的箱子中放入3个红球和3个白球(球的形状和大小都相同),抽奖规则有以下两种方案可供选择:
方案一:选取一名员工在袋中随机摸出一个球,若是红球,则放回袋中;若是白球,则不放回,再在袋中补充一个红球,这样反复进行3次,若最后袋中红球个数为X,则每位员工颁发奖金X万元;
方案二:从袋中一次性摸出3个球,把白球换成红球再全部放回袋中,设袋中红球个数为Y,则每位员工颁发奖金Y万元.
(1)若用方案一,求X的分布列与数学期望;
(2)比较方案一与方案二,求采用哪种方案,员工获得奖金数额的数学期望值更高?请说明理由;
(3)若企业有1000名员工,他们为企业贡献的利润近似服从正态分布N(μ,σ2),μ为各位员工贡献利润数额的均值,计算结果为100万元,σ2为数据的方差,计算结果为225万元,若规定奖金只有贡献利润大于115万元的员工可以获得,若按方案一与方案二两种抽奖方式获得奖金的数学期望值的最大值计算,求获奖员工的人数及每人可以获得奖金的平均数值(保留到整数)
参考数据:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ≤μ+σ)≈0.6826.
【考点】离散型随机变量的方差与标准差.
【答案】(1)分布列见解答;数学期望为;(2)方案二员工获得奖金数额的数学期望值更高;(3)获奖员工的人数约为159;奖员工可以获得奖金的平均数值为28万元.
307
72
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:124引用:7难度:0.4
相似题
-
1.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行.它被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法某中学培养学生知法懂法,组织全校学生学习《中华人民共和国民法典》并组织知识竞赛.为了解学习的效果,现从高一,高二两个年级中各随机抽取20名学生的成绩(单位:分),绘制成如图所示的茎叶图:
根据学生的竞赛成绩,将其分为四个等级:测试成绩(单位:分) [60,70) [70,80) [80,90) [90,100) 等级 合格 中等 良好 优秀
(2)现从样本中成绩为良好的学生中随机抽取3人座谈,记X为抽到高二年级的人数,求X的分布列,数学期望与方差.发布:2024/12/29 12:30:1组卷:11引用:2难度:0.6 -
2.2021年是北京城市轨道交通新线开通的“大年”,开通线路的条、段数为历年最多.12月31日首班车起,地铁19号线一期开通试运营.地铁19号线一期全长约22公里,共设10座车站,此次开通牡丹园、积水潭、牛街、草桥、新发地、新宫共6座车站.在试运营期间,地铁公司随机选取了乘坐19号线一期的200名乘客,记录了他们的乘车情况,得到下表(单位:人):
下车站
上车站牡丹园 积水潭 牛街 草桥 新发地 新宫 合计 牡丹园 /// 5 6 4 2 7 24 积水潭 12 /// 20 13 7 8 60 牛街 5 7 /// 3 8 1 24 草桥 13 9 9 /// 1 6 38 新发地 4 10 16 2 /// 3 35 新宫 2 5 5 4 3 /// 19 合计 36 36 56 26 21 25 200
(Ⅱ)在试运营期间,从在积水潭站上车的所有乘客中随机选取三人,设其中在牛街站下车的人数为X,求随机变量X的分布列以及数学期望;
(Ⅲ)为了研究各站客流量的相关情况,用ξ1表示所有在积水潭站上下车的乘客的上、下车情况,“ξ1=1”表示上车,“ξ1=0”表示下车.相应地,用ξ2,ξ3分别表示在牛街,草桥站上、下车情况,直接写出方差Dξ1,Dξ2,Dξ3大小关系.发布:2024/12/29 12:30:1组卷:594引用:6难度:0.5 -
3.已知一组样本数据x1,x2…x10,且
+x21+…+x22=180,平均数x210=4,则该组数据的方差为x发布:2024/12/29 13:30:1组卷:137引用:3难度:0.5