“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学内容,例如:用一张纸片,按如下步骤折纸:
步骤1:在纸上画一个圆A,并在圆外取一定点B;
步骤2:把纸片折叠,使得点B折叠后与圆A上某一点重合;
步骤3:把纸片展开,并得到一条折痕;
步骤4:不断重复步骤2和3,得到越来越多的折痕.
你会发现,当折痕足够密时,这些折痕会呈现出一个双曲线的轮廓.
若取一张足够大的纸,画一个半径为2的圆A,并在圆外取一定点B,AB=4,按照上述方法折纸,点B折叠后与圆A上的点T重合,折痕与直线TA交于点P,P的轨迹为曲线C.
(1)以AB所在直线为x轴建立适当的坐标系,求C的方程;
(2)设AB的中点为O,若存在一个定圆O,使得当C的弦PQ与圆O相切时,C上存在异于P,Q的点M,N使得PM∥QN,且直线PM,QN均与圆O相切.
(i)求证:OP⊥OQ;
(ii)求四边形PQNM面积的取值范围.
【考点】直线与圆锥曲线的综合.
【答案】(1);
(2)(i)证明见解析;(ii)[6,+∞).
x
2
-
y
2
3
=
1
(2)(i)证明见解析;(ii)[6,+∞).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/19 8:0:9组卷:54引用:4难度:0.3
相似题
-
1.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
2.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:96引用:1难度:0.9 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7