本市某路口的转弯处受地域限制,设计了一条单向双排直角拐弯车道,平面设计如图所示,每条车道宽为4米,现有一辆大卡车,在其水平截面图为矩形ABCD,它的宽AD为2.4米,车厢的左侧直线CD与中间车道的分界线相交于E、F,记∠DAE=θ.
(Ⅰ)若大卡车在里侧车道转弯的某一刻,恰好θ=π6,且A、B也都在中间车道的直线上,直线CD也恰好过路口边界O,求此大卡车的车长.
(Ⅱ)若大卡车在里侧车道转弯时对任意θ,此车都不越中间车道线,求此大卡车的车长的最大值.
(Ⅲ)若某研究性学习小组记录了这两个车道在这一路段的平均道路通行密度(辆/km),统计如下:
θ
=
π
6
时间 | 7:00 | 7:15 | 7:30 | 7:45 | 8:00 |
里侧车道通行密度 | 110 | 120 | 110 | 100 | 110 |
外侧车道通行密度 | 110 | 117.5 | 125 | 117.5 | 110 |
②g(x)=a|x-b|+c,请你根据上表中的数据,分别对两车道选择最合适的一种函数来描述早七点以后的平均道路通行密度(单位:辆/km)与时间x(单位:分)的关系,并根据表中数据求出相应函数的解析式.
【考点】根据实际问题选择函数类型;三角函数应用.
【答案】(Ⅰ);(Ⅱ);(Ⅲ);.
8
-
8
3
15
8
2
-
24
5
f
(
x
)
=
10
sin
(
π
30
x
)
+
110
g
(
x
)
=
-
1
2
|
x
-
30
|
+
125
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/2 8:0:9组卷:57引用:5难度:0.5
相似题
-
1.随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设某放射性同位素的衰变过程中,其含量P(单位:贝克)与时间t(单位:天)满足函数关系P(t)=
,其中P0为t=0时该放射性同位素的含量.已知t=15时,该放射性同位素的瞬时变化率为P02-t30,则该放射性同位素含量为4.5贝克时,衰变所需时间为( )-32ln210发布:2024/12/29 13:30:1组卷:158引用:12难度:0.7 -
2.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为福清人喜爱的交通工具.据预测,福清某新能源汽车4S店从2023年1月份起的前x个月,顾客对比亚迪汽车的总需量R(x)(单位:辆)与x的关系会近似地满足
(其中x∈N*且x≤6),该款汽车第x月的进货单价W(x)(单位:元)与x的近似关系是W(x)=150000+2000x.R(x)=12x(x+1)(39-2x)
(1)由前x个月的总需量R(x),求出第x月的需求量g(x)(单位:辆)与x的函数关系式;
(2)该款汽车每辆的售价为185000元,若不计其他费用,则这个汽车4S店在2023年的第几个月的月利润f(x)最大,最大月利润为多少元?发布:2024/12/29 11:30:2组卷:24引用:3难度:0.5 -
3.某工厂生产某种零件的固定成本为20000元,每生产一个零件要增加投入100元,已知总收入Q(单位:元)关于产量x(单位:个)满足函数:Q=
.400x-12x2,0≤x≤40080000,x>400
(1)将利润P(单位:元)表示为产量x的函数;(总收入=总成本+利润)
(2)当产量为何值时,零件的单位利润最大?最大单位利润是多少元?(单位利润=利润÷产量)发布:2024/12/29 13:0:1组卷:236引用:12难度:0.5