【阅读新知】19世纪英国著名文学家和历史学家卡莱尔给出了一元二次方程x2+bx+c=0的几何解法:如图1,在平面直角坐标系中,已知点A(0,1)、B(-b,c),以AB为直径作⊙P.若⊙P交x轴于点M(m,0)、N(n,0),则m、n为方程x2+bx+c=0的两个实数根.
【探究新知】
(1)由勾股定理得,AM2=12+m2,BM2=c2+(-b-m)2,AB2=(1-c)2+b2.
在Rt△ABM中,AM2+BM2=AB2,所以12+m2+c2+(-b-m)2=(1-c)2+b2.
化简得:m2+bm+c=0.同理可得:n2+bn+c=0n2+bn+c=0.
所以m、n为方程x2+bx+c=0的两个实数根.
【运用新知】
(2)在图2中的x轴上画出以方程x2-4x-2=0两根为横坐标的点M、N.
(3)已知点A(0,1)、B(-10,25),以AB为直径作⊙C.判断⊙C与x轴的位置关系,并说明理由.
【拓展提升】
(4)在平面直角坐标系中,已知两点A(0,a)、B(-b,c),若以AB为直径的圆与交x轴有两个交点M、N,则以点M、N的横坐标为根的一元二次方程是 x2+bx+ac=0x2+bx+ac=0.
【考点】圆的综合题.
【答案】n2+bn+c=0;x2+bx+ac=0
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/4 7:0:9组卷:184引用:1难度:0.1
相似题
-
1.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.
(1)求证:P为优弧BAC的中点;
(2)连接PC,求PC的长度;
(3)求sin∠BAC的值;
(4)若△ABC为非锐角三角形,请直接写出△ABC的面积的最大值.发布:2025/6/15 3:0:1组卷:97引用:1难度:0.1 -
2.【数学概念】
有一条对角线平分一组对角的四边形叫“对分四边形”.
【概念理解】
(1)关于“对分四边形”,下列说法正确的是 .(填所有正确的序号)
①菱形是“对分四边形”
②“对分四边形”至少有两组邻边相等
③“对分四边形”的对角线互相平分
【问题解决】
(2)如图①,PA为⊙O的切线,A为切点.在⊙O上是否存在点B、C,使以P、A、B、C为顶点的四边形是“对分四边形”?小明的作法:
①以P为圆心,PA长为半径作弧,与⊙O交于点B;
②连接PO并延长,交⊙O于点C;
③点B、C即为所求.
(3)如图②,已知线段AB和直线l,请在图②中利用无刻度的直尺和圆规,在直线l上作出点M、N,使以A、B、M、N为顶点的四边形是“对分四边形”.(只要作出一个即可,不写作法,保留作图痕迹)
(4)如图③,⊙O的半径为5,AB是⊙O的弦,AB=8,点C是⊙O上的动点,若存在四边形ABCD是“对分四边形”,且有一条边所在的直线是⊙O的切线,直接写出AC的长度.发布:2025/6/14 20:30:2组卷:977引用:3难度:0.1 -
3.如图,⊙O为△ABC的外接圆,AC=BC,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.
(1)求证:直线AE是⊙O的切线.
(2)若CD=6,AB=16,求⊙O的半径;
(3)在(2)的基础上,点F在⊙O上,且=ˆBC,△ACF的内心点G在AB边上,求BG的长.ˆBF发布:2025/6/14 23:0:1组卷:1104引用:7难度:0.1