阅读下列材料:
如图1,点A、D、E在直线l上,且∠BDA=∠BAC=∠AEC,
则:∠CAE+∠BAC+∠BAD=180°,
又∠ABD+∠BDA+∠BAD=180°,
故∠CAE=∠ABD.
像这样一条直线上有三个等角顶点的图形我们把它称为“一线三等角”图形.
请根据以上阅读解决下列问题:
(1)如图2,Rt△ABC中,∠ACB=90°,AC=BC,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.
(2)如图3,在△ABC中,点D在BC上,∠CAD=90°,AC=AD,∠DBA=∠DAB,AB=23,求点C到AB边的距离.
(3)如图4,在平行四边形ABCD中,E为边BC上一点,F为边AB上一点.若∠DEF=∠B,AB=10,BE=4,EF=6,求DE的长.
3
【考点】四边形综合题.
【答案】(1)证明见解析;
(2);
(3)15.
(2)
3
(3)15.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/7 8:0:9组卷:422引用:1难度:0.5
相似题
-
1.如图,△AMN是边长为2的等边三角形,以AN,AM所在直线为边的平行四边形ABCD交MN于点E、F,且∠EAF=30°.
(1)当F、M重合时,求AD的长;
(2)当NE、FM满足什么条件时,能使;32(NE+FM)=EF
(3)在(2)的条件下,求证:四边形ABCD是菱形.发布:2025/5/26 2:30:2组卷:150引用:2难度:0.1 -
2.已知,在▱ABCD中,E为AB上一点,且DE=2AD,作∠ADE的平分线交AB于点F.
(1)如图1,当E与B重合时,连接FC交BD于点G,若FC⊥CD,AF=3,求线段CF的长.
(2)如图2,当CE⊥AB时,过点F作FH⊥BC于点H,交EC于点M.若G为FD中点,CE=2AF,求证:CD-3AG=EM.
(3)如图3,在(1)的条件下,M为线段FC上一点,且CM=,P为线段CD上的一个动点,将线段MP绕着点M逆时针旋转30°得到线段MP′,连接FP′,直接写出FP′的最小值.3发布:2025/5/26 4:0:1组卷:481引用:2难度:0.1 -
3.问题情境:
在数学课上,老师给出了这样一道题:如图1,在△ABC中,AB=AC=6,∠BAC=30°,求BC的长.
探究发现:
(1)如图2,勤奋小组经过思考后发现:把△ABC绕点A顺时针旋转90°得到△ADE,连接BD,BE,利用直角三角形的性质可求BC的长,其解法如下:
过点B作BH⊥DE交DE的延长线于点H,则BC=DE=DH-HE.
△ABC绕点A顺时针旋转90°得到△ADE,AB=AC=6,∠BAC=30°∴……
请你根据勤奋小组的思路,完成求解过程.
拓展延伸:
(2)如图3,缜密小组的同学在勤奋小组的启发下,把△ABC绕点A顺时针旋转120°后得到△ADE,连接BD,CE交于点F,交AB于点G,请你判断四边形ADFC的形状并证明;
(3)奇异小组的同学把图3中的△BGF绕点B顺时针旋转,在旋转过程中,连接AF,发现AF的长度不断变化,直接写出AF的最大值和最小值.发布:2025/5/26 3:0:2组卷:83引用:1难度:0.3