已知函数f(x)=ex-2ax-1(a∈R).
(1)若f(x)≥0恒成立,求实数a的取值集合;
(2)求证:对∀n≥N*,都有sin(1n+1)n+1+sin(2n+1)n+1+sin(3n+1)n+1+⋯+sin(nn+1)n+1<1e-1.
sin
(
1
n
+
1
)
n
+
1
+
sin
(
2
n
+
1
)
n
+
1
+
sin
(
3
n
+
1
)
n
+
1
+
⋯
+
sin
(
n
n
+
1
)
n
+
1
<
1
e
-
1
【考点】利用导数研究函数的最值;函数恒成立问题.
【答案】(1);
(2)证明见解析.
{
1
2
}
(2)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/9 8:0:8组卷:89引用:2难度:0.2
相似题
-
1.已知函数
,若关于x的不等式f(x)=ln2+x2-x+1对任意x∈(0,2)恒成立,则实数k的取值范围( )f(kex)+f(-12x)>2发布:2025/1/5 18:30:5组卷:299引用:2难度:0.4 -
2.已知函数f(x)=
.ex-ax21+x
(1)若a=0,讨论f(x)的单调性.
(2)若f(x)有三个极值点x1,x2,x3.
①求a的取值范围;
②求证:x1+x2+x3>-2.发布:2024/12/29 13:0:1组卷:196引用:2难度:0.1 -
3.已知函数f(x)=ax3+x2+bx(a,b∈R)的图象在x=-1处的切线斜率为-1,且x=-2时,y=f(x)有极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.发布:2024/12/29 12:30:1组卷:48引用:4难度:0.5