如图,棱长为2的正方体ABCD-A1B1C1D1中,E、F分别是棱AB,AD的中点,G为棱DD1上的动点.
(1)是否存在一点G,使得BC1∥面EFG?若存在,指出点G位置,并证明你的结论,若不存在,说明理由;
(2)若直线EG与平面DCC1D1所成的角为60°,求三棱锥C-EFG的体积;
(3)求三棱锥B1-ACG的外接球半径的最小值.
【考点】棱柱、棱锥、棱台的体积;直线与平面平行.
【答案】(1)存在点 G 为 DD1 的中点,证明过程见解答;
(2);
(3).
(2)
3
6
(3)
4
2
-
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/14 5:0:10组卷:122引用:2难度:0.3
相似题
-
1.如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
,四边形DCBE为平行四边形,DC⊥平面ABC.32
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.发布:2025/1/20 8:0:1组卷:95引用:3难度:0.1 -
2.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD的边BC垂直于圆O所在的平面,且AB=2,AD=EF=1.
(Ⅰ)设CD的中点为M,求证:EM∥平面DAF;
(Ⅱ)求三棱锥B-CME的体积.发布:2025/1/20 8:0:1组卷:16引用:1难度:0.5 -
3.如图所示,AB为圆O的直径,PC⊥平面ABC,Q在线段PA上.
(1)求证:平面BCQ⊥平面ACQ;
(2)若Q为靠近P的一个三等分点,PC=BC=1,,求VP-BCQ的值.AC=22发布:2025/1/20 8:0:1组卷:38引用:3难度:0.6